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ABSTRACT 
 

Breast carcinoma grading of histopathological images is the standard clinical practice for 
the prognosis and diagnosis of breast carcinoma development. The grading provides semi-
quantitative assessment for mitotic activity, tubules formation and nucleus pleomorphism. 
Semi-quantitative scores obtained from the manual grading are inconsistent and may lead 
to inter- and intra- raters variability. Fortunately, the recent advances in image processing 
have significantly increased the possibility of fully quantifying the breast carcinoma 
features, reducing workload of pathologist and providing reproducible and high accuracy 
results. This paper is meant as an introduction for non-experts. It starts with an overview 
of the breast carcinoma, breast carcinoma grading systems and followed by a discussion on 
different image processing techniques applied to measure tubules formation, nucleus 
pleomorphism and mitotic activity as well as a discussion on complete system for the 
breast carcinoma measurement. 

 
Keywords: Biomedical Engineering, Image Processing, Breast Carcinoma, Nottingham 
Grading System, Quantitative Measurement. 

 
 

1.  INTRODUCTION 
 
Breast carcinoma represents a huge global health problem among women in both developed 
and developing countries. It is estimated that over 508,000 women worldwide died in 2011 due 
to breast carcinoma [1]. The WHO statistics showed that 50% of breast carcinoma cases and 
58% of the deaths occurred in the developing countries such as Malaysia, Indonesia and 
Thailand [1]. The incidence rates of breast carcinoma vary greatly worldwide from 19.3 per 
100,000 women in Eastern Africa to 89.7 per 100,000 women in Western Europe. In developing 
countries, the incidence rates are below 40 per 100,000 cases [1]. African countries found to be 
the lowest incidence rates across the globe. The survival rates of breast carcinoma vary greatly 
worldwide, ranging from more than 80% in Sweden, Japan and North America to around 60% in 
the middle-income countries and below 40% in the low-income countries [1]. 
 
A recent study found that Malaysian women are prone to a high risk in developing breast 
carcinoma during their lifetime: 1 in 28 women [2]. The incidence rates are higher in the urban 
areas: 1 in 22 women, as compared to the rural areas: 1 in 60 women [2]. Some states in 
Malaysia were reported to have higher breast carcinoma incidences. Penang, Kuala Lumpur and 
Johor are the top three states with Age-standardised rate (ASR): 50.0, 42.2 and 39.8 incidences 
per 100,000 people, respectively. Breast carcinoma has been found to be the top cancer that 
commonly develops in women during their lifetime: 32.1%. The incidence cases of breast 
carcinoma in Malaysia have increased since 2007. There were 3579 positive cases reported in  
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2007 and 3766 positive cases reported in 2011. The average age of the high risk group in 
Malaysia is 53 to 57 years [2]. Genetic mutation, particular in BRCA1, BRCA2 and p53, lack of 
breastfeeding, higher levels of endogenous estrogens, certain dietary patterns, obesity and late 
menopause are the risk factors of breast carcinoma. 
 
Breast carcinoma has a significant burden in term of morbidity, mortality and health care cost 
worldwide in developed and developing countries [1]. This has initiated the global interest in 
breast carcinoma studies as well as the public interest in breast carcinoma assessments and 
treatments. Precise and accurate evaluation in breast carcinoma grading is crucial to provide a 
better and more efficient treatment planning.  
 
Breast carcinoma is a complex, heterogeneous and fatal disease [3]. It is a malignant tumour and 
starts from cells of the breast. Breast carcinoma can either begin in the cells lining of lobules or 
ducts and for rare type the cancer begins in the stromal tissues [3]. There are different types of 
breast carcinoma. The most common type of breast carcinoma is Invasive Ductal Carcinoma 
(IDC) [4]. Cancer cells that start inside the milk ducts is known as Ductal Carcinoma In Situ 
(DCIS). The new WHO classification listed DCIS as precursor lesions of the breast [4].  
 
Breast carcinoma can be cured if immediate and precise treatments are delivered to the patients 
[5]. Abnormalities found during the clinical breast examinations (such as mammograms, breast 
MRI or breast ultrasound) require a definite diagnosis using a biopsy test [5] .There are three 
main types of biopsies; surgical biopsy, fine needles aspiration biopsy and core biopsy [5]. The 
tissues obtained from this biopsy procedure are examined under a microscope by a pathologist. 
The pathologist grades the breast carcinoma by referring to a grading system. The grading 
results are used to evaluate tumour characteristics and for patient prognosis and theragnosis 
[6-8]. The breast tissues examined under a microscope can be captured using a camera or 
scanner and kept in form of images. A number of studies have used the captured images to fully 
quantify cancer features by utilising image processing techniques [9-11]. 
 
This paper is meant as an introduction for non-experts. It starts with a review on the 
established methods in the assessment of breast carcinoma overall grade based on Nottingham 
Histopathological Grading (NHG) system. In the NHG system, three criteria are used to assess 
the overall grading: percentage of tubule formation, nucleus pleomorphism, and mitotic count. 
These criteria are discussed in detail in Section 2.0. Reviews on established methods based on 
the three criteria are discussed in Section 3.0. Discussion on the established methods is 
presented in Section 4.0. 
 
 
2. GRADING OF BREAST CARCINOMA 
 
Histological grading is typically referred to the growth pattern, degree of differentiation and is 
used to describe the resemble of the normal breast epithelial cells [11]. There are several 
grading systems have been introduced to grade breast carcinoma. Examples of the breast 
carcinoma grading system are the original Scarff-Bloom-Richardson (SBR) system [11, 12] and 
the Black method [12, 13]. The SBR system provides score (ie., ranging from 1 to 3) for each of 
the following criteria: nuclear features, tubule formation and mitotic rate. A total score is 
obtained by summing scores in each criterion (3-9). This total score provides grade for the 
breast carcinoma. Grades 1, 2 and 3 have the following respectively total scores: 3 to 5, 6 to 7 
and 8 to 9. The Black Method [13] only provides score for nucleus features. Tubule formation 
and mitotic rate are not considered in the Black Method system. 
Recently, the Elston-Ellis modification of the SBR grading system or Nottingham Histological 
Grading (NHG) system is becoming the most commonly used grading system worldwide [12, 14, 
15]. The NHG system is accepted as the gold standard for grading of breast carcinoma [16, 17]. 
The NHG system is recommended by World Health Organization (WHO), the European Union 
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(EU), the Royal College of Pathologists (UK RCPath) and the American Joint Committee on 
Cancer (AJCC) [15, 18]. The NHG system provides more objective criteria for each of the 
elements in SBR system and provides a more systematic way to determine mitotic rate [15]. The 
NHG system has been proven to be more reproducible among pathologists [19-30]. This may 
directly influence the types of treatment that could be delivered to the patients. The NHG 
system uses the same criteria as in SBR system to grade the breast carcinoma (ie., tubule 
formation, nuclear pleomorphism and mitotic count).  
 
Tubule formation can be described by how well the tumour cells differentiate [14]. Well 
differentiated tumour cells tend to have the similar structure as the normal cells. The tumour 
cells form tubule and this tubule creates a lumen (Figure 1). Poor differentiated tumour cells do 
not have a lumen as the tumour cells tend to invade into the lumen area, resulting in lumen 
degeneration [9]. Tubule formation is measured in percentage ratio against the overall cell 
structures. The tubule formation scoring system is shown in Table 1. 
 

  

  

Figure 1. Histopathological images with tubules and lumens. The tubules are highlighted with yellow 
squares while lumens are pointed by the yellow arrows. 

 
Table 1 Scoring system of tubule formation [14]. 

 
Score Percentage of tumour area forming tubular structures 

1 >75% 
2 10% to 75% 
3 <10% 

 
Nuclear pleomorphism refers to the variation of tumour cells that occurred in shape, size as well 
as the staining of cells and nuclei [14] as shown in Figure 2. The degree of variation has been 
used to describe the severity of the tumour cells. The scoring of nuclear pleomorphism is 
defined in Table 2. 
 

(a) (b) 
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Figure 2. Scoring of nucleus pleomorphism. (a) Normal image, (b) Image with score 1 in nucleus 

pleomorphism, (c) Image with score 2 in nucleus pleomorphism, (d) Image with score 3 in nucleus 
pleomorphism. 

 
Table 2 Scoring system of nucleus pleomorphism [14] 

 
Score Characteristic 

1 Small nuclei with little increase in size respect to normal 
breast epithelial cells, regular outlines, uniform nuclear 

chromatin and low degree of variation in size 
2 Increase in cell size with open vesicular nuclei, visible 

nucleoli, and moderate variability in term of shape and size 
3 Vesicular nuclei, often with prominent nucleoli, present 

significant variation in shape and size, occasionally with 
very large and eccentric forms 

 
Mitotic count is used to assess the speed of tumour cell growth. Mitosis process involved 
chromosome segregation, nuclear division and cytokinesis [31]. During mitosis, the nucleus 
becomes hyperchromatic due to an excessive nuclear staining. The mitotic cell (Figure 3) is 
more visible under a microscope [32] and appears darker via staining of Hematoxylin and Eosin 
(H & E). The scoring system of mitotic count is shown in Table 3. 
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(c) (d) 

 
Figure 3. Examples of mitotic cells in histopathological images. In (a), (b), (c) and (d), the mitotic cells are 

shown in the red circles. 

 
Table 3 Scoring system of mitotic count [14] 

 
Score Number of mitotic counts per 10 high power field (hpf) 

1 0 - 9 
2 10 - 19 
3 20 or >20 

 
 
3. QUANTITATION OF BREAST CARCINOMA FEATURES USING IMAGE PROCESSING 
TECHNIQUES 
 
A pathologist examines breast tissue slides under a microscope where tubules, nucleus features 
and mitotic counts are evaluated manually. Slide examination on breast carcinoma tissue may is 
a cumbersome and tedious work [33]. In addition, inter- and intra-observers variability among 
pathologist exhibited a significant effect on the outcome of manual grading [33]. Few studies 
reported that manual grading is not reproducible [11, 34, 35]. Therefore, an automated- 
computerized system is essential to encounter the limitations aforementioned. 
 
3.1 Assessment of Tubule Formation 
 
In this section, a brief published work on tubule segmentation is discussed.  
 
Ko et al. [8] proposed a texture based extraction of tubule in breast carcinoma. K-mean 
clustering technique was first applied on HSV and La*b* channels to identify the tubule 
candidates. Morphological closing and holes filling were implemented as post processing 
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techniques to eliminate artefacts and noises. The proposed algorithm was tested on 90 images 
with an overall accuracy of 90.12%. 
 
Cheng et al. [36] implemented a simple thresholding method to identify the lumen candidates. 
Then, the region growing was applied to identify the lumen area in the study images. These 
algorithms can be applied on real-time processing in tubule. 
 
Fakhrzadeh et al. [37] used an active contour [38-40] to extract the lumens candidates. This 
algorithm computes the evolving curve inside the connected component using Geodesic 
Distance Transform. The gland boundary was then segmented using watershed classifier. This 
study provided an accuracy of 89.0% based on 36 input images. 
 
Ojansivu et al. [41] applied a texture based algorithm with Local Phase Quantization (LPO) and 
Local Binary Pattern (LBP) descriptors to segment tubule in the breast carcinoma images. The 
study found that by using the LPQ descriptor in addition to LBP descriptor alone, the overall 
accuracy can be improved by 2% (from 62% to 64%). 
 
Naik and Doyle [42] implemented low, high and domain knowledge for features segmentation in 
the breast carcinoma. The low level information was based on the pixel values where the high 
level information was based on the relationship established between the pixels and the object of 
interested. Domain knowledge was based on the characteristic of the features of interested in 
histological images. This method had successfully identified the percentage of tubules in the 
breast carcinoma. The percentage was then used to calculate the tubule scores based on 
Nottingham Grading System (breast carcinoma) [12]. The scoring hold an accuracy of 81.91% in 
classification of cancer and non-cancer images.  
 
Doyle and Agner [43] implemented texture and architectural based methods to segment tubules 
in the breast carcinoma. Gabor filter features were extracted and applied to the algorithm and 
produced accuracy of 95.80% in classification of cancer and non-cancer histopathology images. 
Apart from this, the manifold data of different grades of breast carcinoma show a smooth spatial 
transition through spectral clustering method.  
 
Chekkoury et al. [44] used textural, topological and morphometric features based segmentation 
in breast carcinoma histopathological images. This fusion method has been proven to be more 
effective (accuracy of 87.14%) to segment the cancer features. This is because each technique 
holds a different characteristics or relationships between the structures and pixel values. 
Tubules candidates that did not fit into the proposed criteria were registered as artefacts, thus, 
eliminated from being segmented.  
 
Nguyen et al. [45] developed a fusion method based on lumen domain knowledge and nuclei 
features. The lumens candidates were detected using the lumen-based method. Then, the nuclei 
detection was applied to determine the tumor nuclei in the images. The lumen candidates that 
have a close relationship with the tumor nuclei were identified and registered as true lumens. In 
addition, graph-cut based method was implemented to eliminate the possible faulty links 
established between the lumen candidates and the nearby tumor nuclei. This method resulted 
in a mean accuracy of 91.0%.   
 
Bilgin et al. [46] used k-mean clustering for tubule segmentation. A cell-graph was generated 
based on each segmented image. Then, a global metric based on the cell-graph was determined 
and this information is for training purpose. The hierarchical cell graphs were proven to be 
accurate in term of classification in breast tissues. The study was tested on 446 images and 
obtained an overall accuracy of 81.8%. 
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3.2 Assessment of Nucleus Pleomorphism 
 
In this section, a brief review on nucleus pleomorphism detection in histopathological images is 
discussed. 
 
Cosatto et al. [9] implemented Hough transforms to detect enlarged nuclei in histopathological 
images. These nuclei may have low amount of H in its center as compared to the nucleus edge 
during the staining process. To tackle this limitation, a Hough Transform was used to detect 
elliptical nuclei in the nucleus. Then, the active contour algorithm was applied to identify the 
boundary of the nucleus. This algorithm was tested on 208 images with an F-measure of 89.0%. 
 
Petushi et al. [47] used adaptive thresholding and morphological operation to segment the cell 
nuclei. The input RGB image was first converted into a grey-scale image. Then aforementioned 
methods were applied to obtain the region of interest (ie., the nucleic). Features extraction 
based on the nucleus candidates were used for classification. The proposed study implemented 
learning-based approaches for image classification using Quadratic classifier from the LNKnet 
software. This study was tested on 24 images with an overall accuracy of 95.6%. 
 
Doyle et al. [48] implemented a cascaded (CAS) approach which has been proven to be more 
systematic for nucleus detection and cancer grading. This approach maximized the intra-
homogeneity and inter-heterogeneity of the input data. The nucleus was detected and a 
relationship between neighborhood nuclei was established using Delaunay Triangular, Voronoi 
diagram, nuclear density calculation and Minimum Spanning Tree. This study was conducted on 
214 images with an accuracy of 98.0% in detection of cancer vs non-cancerous. 
 
Chekkoury et al. [44] proposed textural, topological and morphological features approach in 
malignancy detection. The color RGB input image was first converted to CMY color model. In a 
high resolution (40x magnification) nuclei may be blurred with weak or missing boundaries. 
Therefore, a Random Walker (RW) was applied to segment the nucleus. Then, textural, 
topological and morphological features were extracted from the nucleus candidates and 
classified using a Support Vector Machine (SVM). A total of 70 images were tested and an overall 
accuracy of 87.14% was obtained. 
 
Dalle et al. [49] proposed a Gaussian modelling in pleomorphism detection. First, the 
distribution of the color in the input image was modelled using a Gaussian model. Then, the 
three levels of nucleus pleomorphism based on the NHG System were predefined with a specific 
color threshold. Then, the difference in color between the detected nucleus and the color 
thresholds was calculated. The nucleus was then assigned into respective grade based on the 
color thresholds. 
 
3.3 Assessment of Mitotic Count 
 
In this section, a brief literature review on mitotic cell detection is discussed.  
 
Al-Kofahi et al. [10] implemented the multiscale Laplacian of Gaussian (LoG) with automatic 
scale selection to detect the nuclei in histopathology images. First, graph-cuts-based 
binarization is use to remove the foreground of the input images. Then, the proposed method 
aforementioned was applied. A second graph-cut-based method was implemented with the 
combination of alpha expansions and graph coloring to refine the detection accuracy. This 
algorithm was tested on 25 images and obtained accuracy of 86.3%. Irshad [50] implemented 
LoG together with thresholding, morphological and active contour model to detect the mitotic 
cells. Before implementation of these techniques, the color RGB input image was converted into 
a blue-ratio image. The classification was performed by using the decision tree method. Two 
image scanners: Aperio and Hamamatsu were used. Each scanner captured 50 images and the F-
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measures of 72.0% and 63.0% were obtained respectively. Wang et al. [51] combined LoG and 
local dynamic thresholding on a blue-ratio color space of RGB input images to segment the 
mitotic cell candidates. A cascade approach was then applied on the mitotic cell candidates. The 
cascade approach consists of a convolutional neural network (CNN) and handcrafted features 
(ie., morphology, color and texture features). A random classifier with 50 trees was 
implemented to identify the true mitotic cells. The algorithm was tested on 35 images with an F-
measure of 73.45%. 
 
Nateghi et al. [52] implemented a Teaching-Learning-Based optimization (TLBO) to reduce the 
percentage of false positive in mitotic cell detection. In TLBO, the false positive mitotic 
candidates is represented by a set of cost function. The number of false positive could be 
eliminated via minimizing of the cost function. Support Vector Machine (SVM) was applied to 
classify 35 images with an output F-measure of 77.34%.  
Irshad et al. [53] used a novel mitotic cell detection based on Scale-Invariant Feature Transform 
(SIFT) feature and Hierarchical Model and X (HMAX) biologically inspired approach. Features 
such as co-occurrence features, run-length features and SIFT were extracted from the blue-ratio 
images. Then, these features were used as input to the classifier to classify the true mitotic cells. 
This algorithm was tested on 25 images with an F-measure of 76.0%. 
 
Pourakpour and Ghassemian [54] proposed a Gamma-Gaussian Mixture Model (GGMM) to 
detect non-mitotic and mitotic cells. In this model, the mitotic cells were represented by Gamma 
model and non-mitotic cells were represented by Gaussian Model. A SVM with RBF kernel 
classifier was applied on Aperio XT and Hamamatsu scanner images. The F-measure obtained 
for Aperio XT and Hamamatsu scanner images were 92.3% and 89.4% respectively. Khan et al. 
[55] also implemented GGMM approach to detect mitotic and non-mitotic cells. In addition, the 
authors proposed a Context Aware Post Processing (CAPP) to reduce the number of false 
positive. The false positive was reduced significantly with a small compensation of sensitivity. 
35 breast histology images were used in this study and a sensitivity of 72.0% was obtained. 
 
Nateghi and Habibollah [56] proposed a Genetic Optimization algorithm to reduce the number 
of false positive in mitotic cell detection. Features such as Gabor features, co-occurrence and 
run-length matrices were extracted from the mitotic cell candidates. A SVM was used as 
classifier to classify the mitotic candidates. This algorithm was tested on 35 images with an 
overall F-measure of 78.47%. 
 
Tashk et al. [57] proposed a Maximum Likelihood Estimation (MLE) to identify the true mitotic 
cells. The study implemented a 2-D anisotropic diffusion as a pre-processing method. Then, MLE 
was applied to extract pixel-wise features in the input images. An object-wise completed local 
binary pattern (CLBP) was proposed to prevent misclassification. A SVM was then used to 
classify the mitotic cells. The average F-measures of 70.94% and 70.11% were obtained 
respectively for Aperio XT and Hamamatsu scanner images. 
 
Logambal and Saravanan [58] proposed a Bayesian modelling and a local region thresholding 
method for mitotic cell detection. Features such as shape, intensity, gradient and texture were 
extracted from the mitotic candidates. In order to evaluate the performance of the proposed 
method, 35 histopathological images were captured from five breast carcinoma slides. The 
proposed method achieved a promising result with an output accuracy of 95.8%. 
 
Sertel et al. [33] proposed a likelihood function estimation to identify the probability a pixel is 
belong to a mitotic cell group. The proposed method started with a pre-processing using 
histogram equalization. Then, an anisotropic diffusion is applied to smooth the heterogeneous 
regions and to normalize the color distribution in the input image. This algorithm was followed 
by a probability calculation and mitotic cells segmentation using a component-wise-2-step 
thresholding. This algorithm obtained an overall accuracy of 81.8%. 
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Ciresan et al. [59] proposed a Deep Neural Network (DNN) to classify the mitotic cells from the 
background. The DNN is a max-pooling (MP) convolutional neural network (CNN). DNN can 
operate on a color RGB input image. DNN has a better weight, non-linearity and connections as 
compared to the CNN. An F-measure of 78.2% was obtained when DNN was used to classify 50 
images. Chen et al. [60] focused on the classification of mitotic cells. The study proposed a Deep 
Cascaded Neural Network (CasNN) as the classification model to identify mitotic cells in breast 
carcinoma. The study focused on the computation enhancement as the proposed method was 60 
times faster as compared to the present method in 2012 ICPR MITOSIS data. The algorithm 
achieved an F-measure of 78.8%, which was slightly higher than Deep Neural Network (DNN) 
proposed by Ciresan et al. [59]. 
 
Lu and Mandal [61] proposed a Bayesian Modelling and a local-region thresholding to identify 
mitotic cells. The relationship function was first calculated on every pixel to identify the 
likelihood a pixel is belong to a mitotic or a non-mitotic group. Then, Bayesian Modelling and 
local-region thresholding were implemented to detect and segment the pixels that have high 
affinity toward mitotic group. A Model Explanation System (MES) classifier was then used to 
classify all the pixels into respective groups. The proposed method obtained a promising result 
by registered an overall sensitivity, which is greater than 80%. 
 
Paul and Mukherjee [62] used Relative-Entropy Maximized Scale Space (REMSS) in the mitotic 
detection. This method could prevent over segmentation as compared to morphological scale 
space because the proposed method parameterizing only grey levels that hold a Relative-
Entropy between the cells and its background. A random forest classifier was used to classify 
40x magnification training data set and obtained an F-measure of 73.8%. 
 
Chowdhury et al. [63] implemented a minimum weight bipartite graph matching to tract the 
mitotic cells. Median filter is used as pre-processing to remove high level noises in the input 
images. Then, an entropy thresholding was implemented to segment the cells from the 
background. After pre-processing and segmentation stage, the bipartite graph matching was 
applied to 10 microscopy images and a mean accuracy of 80.63% was obtained. 
 
Nedzved et al. [64] used a fast grey-scale thinning algorithm to detect cells in the input images. 
The proposed algorithm was simple where the idea was based on binary image layer analysis 
that is by applying mathematical morphology and merging operation on grey-scale images. 
However, this study is lack of quantitative measurement results and the outcome of 
segmentation was highly dependent on the staining outcome. 
 
Yang et al. [65] proposed a marker-controlled watershed to segment the cells based on 
mathematical morphology. This method was pertained to avoid over segmentation. A tracking 
method was applied based on a modified mean shift algorithm to further refine the 
segmentation results which then followed by the mean-shift algorithm and Kalman filter. A 
promising result was obtained with an overall segmentation accuracy of 98.8%.  
 
Lee et al. [66] focused on detection of nuclei boundary using snake and local tunings. They 
implemented two iterative generalized Hough Transforms (GHTs) in the study. The first 
iterative was used to obtain the information on the size of the nuclei, whereas the second 
iterative was to segment the nuclei from the background.  This algorithm was applied on 
cytological images with an overall accuracy greater than 80.0%. 
 
Dalle et al. [49] used a combination method based on features and Gaussian model to detect 
mitotic cells. The low resolution input images were analyzed to detect neoplasm. The areas of 
neoplasm were extracted and underwent a higher magnification for further feature extraction 
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(ie., mean, standard deviation, solidity, eccentricity and area). These features were classified 
using probability estimation. 
 
3.4 Quantitative Measurement System of Breast Carcinoma 
 
The state-of-art methods in tubule detection, nucleus pleomorphism detection and mitotic 
count might be effective in quantifying breast carcinoma and lead to a promising result. 
However, there are no many studies proposed automated systems that replicate Nottingham 
Grading System to fully quantitatively measure breast carcinoma. Studies in [42, 53, 67] had 
developed full systems based on the Nottingham Grading System. However the proposed system 
only had been tested to a small number of dataset (ie., 12 images [42] and 6 images [49]). A 
large data set may result in a great variation in overall performance. 
 
 
4. DISCUSSION 
 
Computer technology especially on topics that are related to the use of image processing 
techniques has brought many changes in clinical practice of breast carcinoma disease. This 
initiated a digitalization era across the globe where vast imaging techniques are employed and 
integrated in clinical research. Many extensive works have been published and tested on the 
individual criterion of breast carcinoma features (ie., tubule formation, nucleus pleomorphism 
and mitotic count) based on the NHG system. 
 
Based on the established methods discussed in the previous sections, there are studies that had 
provided promising results when using individual criterion for breast carcinoma detection. 
However, very few studies provide measurement for all three breast carcinoma criteria using 
NHG system. Thus, the review shows that there is research gap where the detection on 
individual criterion could be compiled to form a single-input-multi-output system based on the 
NHG system.  
 
Quantitative measurement in image analysis in medical practice is becoming a common trend in 
hospital and health care lines. This is essential for the routine clinical practice and important in 
prognosis and treatment planning. A robust automated system with quantitative output analysis 
may highly increase the efficiency and suitability of the cancer prognosis. The NHG system is 
widely accepted and common in use as a global standard grading system for breast carcinoma. 
However, conventional manual grading based on the NHG system provides semi-quantitative 
scores. Assessment of tubule formation using NHG system is dependent on estimation done by 
the histopathologist. For example, the exact value in percentage for tubule formation is not 
possible to be determined. This problem becomes significant when the percentage of tubule 
formation lies on the boundary between two scores. Also, the scoring for nucleus pleomorphism 
in NHG system is based on qualitative description. There is lack of quantitative characteristic to 
determine the exact score in nucleus pleomorphism. The prognosis and treatment planning of 
the breast carcinoma are greatly dependent on the output grading. The cancer treatment to be 
delivered is directly affecting the morbidity and mortally of the patient.  
 
An automated system that replicates the manual grading system such as on the NHG system to 
fully quantify the breast carcinoma features is hypothesized to provide a great contribution to 
the breast carcinoma grading. A cascade system with modular approaches can be employed 
instead of using a single algorithm to reflect the manual routine practice of the pathologist. 
Hybridization in algorithms may be the solution in the future trend to automate the manual 
grading system. 
 
In general, image processing algorithms can be classified into two types: semi-automated and 
fully automated. A semi-automated algorithm requires some user interaction to initiate a 
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process, whereas a fully automated algorithm requires no user interaction. Although many 
pathologists request for a fully automated algorithm, but in real time application, this could be 
nearly impossible. In many cases, the selection of region of interest (ROI) as the input images 
and the verification of the output results require pathologist to perform the tasks manually. In 
other words, all algorithms are semi-automated. Therefore, in this context automation refers to 
an algorithm that requires a minimum user interaction [68, 69]. The main purpose of algorithm 
implementation is to reduce the workload of pathologist and to provide reproducible and high 
accuracy results.  
 
 
5. CONCLUSION 
 
This paper presents the overview of the breast carcinoma, breast carcinoma grading systems 
(NHG system) and the established image processing methods in assessing breast carcinoma 
features: tubule formation, nucleus pleomorphism and mitotic activity. The review highlights 
the research gaps arise from the established studies: (1) very few studies provide measurement 
for all three breast carcinoma used in the NHG system, (2) conventional grading based on the 
NHG system is a semi-quantitative method, (3) semi-automated algorithms with minimum user 
interaction could be a solution to encounter the vast variation in assessing breast 
histopathological images for breast carcinoma.  
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