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ABSTRACT 
 

Classification of small metal objects plays a crucial role in various engineering fields, 
including manufacturing, robotics, and security. With advancements in deep learning 
techniques, the use of Convolutional Neural Networks (CNNs) has emerged as a powerful 
tool for image classification tasks. The methodology begins by collecting diverse datasets 
consisting of images of small metal objects. The datasets are labelled with corresponding 
object classes to facilitate supervised learning. Preprocessing techniques like re-sizing, 
normalization, and augmentation are used to improve the quality and diversity of the 
datasets. The use of CNNs in classification can be a better option compared to commonly 
used machine learning approaches. The CNN architecture is designed and trained to learn 
the distinguishing features of small metal objects. The main objective of this study is to assess 
the accuracy of this classification and explain how CNNs can enhance classification 
accuracy. The results of this study also show the effect of the optimizer on the classification 
process, which changes when different types of optimizers such as RMSprop, Adam, and SGD 
are used. While some optimizers yield slightly lower accuracy results, the Adam optimizer 
with the CNN ResNet-50 module proves suitable for use with this dataset, achieving a high 
classification accuracy of 86%. 
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1. INTRODUCTION 
 

Sorting parts is a crucial approach for manufacturing companies to enhance part reusability and 
minimize part counts. However, it remains a challenging task for numerous manufacturing 
enterprises. The large number of spare parts creates a management challenge for the company. 
Additionally, engineers will inevitably face time and labour-intensive tasks when selecting the 
appropriate parts from such a vast array. Conventionally, automated parts sorting management 
plays a key role in streamlining user access, increasing the rate of part re-usability, minimizing 
part quantity, increasing efficiency and reducing the ever-increasing cost and time associated 
with new parts development. The classification of parts and components offers advantages across 
various stages such as design, processing, procurement, and manufacturing. Regarding design, an 
efficient parts sorting system enables engineers to promptly locate suitable or analogous parts 
for direct reuse. Alternatively, it allows for design enhancements by leveraging similar 
components, thereby boosting design efficiency. 
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In the case of quality parts sorting, the process begins with a quality type where non-conforming 
parts are either designated as obsolete or repaired according to established OEM quality 
standards, depending on the nature of the damage or defect. 

Rework or waste management includes collection, transportation, processing, disposal, and 
monitoring. Usually, for parts with complex defects, Comprehensive Logistics will request to 
rework the part. This rework process is usually done manually by the rework team. However, 
sometimes, the quality of the reworked part is affected during the rework. Typically, a manual 
inspection approach is used to check the condition of a part before it can be reused. The recovered 
metal serves as a valuable resource for various industries. Scrap metals can be recycled, 
preserving resources and reducing energy consumption [5]. Various industries impact waste 
quality and quantity. Various techniques have been applied such as manual sorting, magnetic 
separation, and eddy current separation are used for scrap metal separation [6]. 

 
By utilizing advanced machine learning techniques, objects can be automatically classified and 
categorized into various groups using deep learning. This research is focusing on the small metal 
objects classification since it is crucial to identify the damage on the small metal object and to 
classify it based on size and shape. However, developing a standardized classification system for 
small metal objects is challenging due to their wide range of sizes and shapes [3]. The sorting 
procedures often require significant labour and are inefficient due to the irregular shapes and 
intricate features of these objects. Implementing appropriate strategies, such as data 
augmentation, transfer learning, robust feature extraction, ensemble methods, and addressing 
class imbalances, can enhance the accuracy and efficiency of small metal object classification 
systems, thereby increasing their reliability [4]. 

 
The classification involves supervised learning techniques using machine learning algorithms like 
Decision Trees, Naive Bayes, and Linear Regression [6]. Deep learning, a subset of machine 
learning, employs neural networks, particularly Convolutional Neural Networks (CNNs), for 
image classification tasks. CNNs are trained on large labelled datasets to learn intricate features 
and patterns for accurate object classification [7]. Deep learning for small metal object analysis 
faces challenges due to limited labelled data, lack of visual diversity, complex designs, and various 
angles. Deep learning models can struggle with generalization and real-time processing. 
Overcoming these challenges requires techniques like data augmentation, transfer learning, 
inclusion of domain-specific knowledge, and multi-modal learning. Enhancements include data 
augmentation to increase diversity, transfer learning for efficient learning, incorporation of 
domain-specific knowledge, and multi-modal fusion techniques. Experimentation and fine-tuning 
are crucial to identifying optimal strategies for specific scenarios [8]. 

 
Thus, the study aims to classify small metal objects using CNN classifiers, considering the 
accuracy of the classification. CNNs offer automated feature extraction, making them suitable for 
direct use with raw data. The research explores CNN's potential in small metal object 
classification, as this approach is less commonly used in this domain [9]. 

 

2. SMALL METAL OBJECT CLASSIFICATION APPROACH 
 

Classification of Small Metal Objects with a Deep Learning Approach is necessary to achieve 
efficient and accurate classification, standardize processes, increase productivity, gather valuable 
insights, ensure consistent quality control, reduce costs and contribute to technological progress. 
It addresses the challenges associated with manual classification and provides many benefits 
across various industries dealing with small metal objects. For that purpose, an experiment was 
conducted to collect data for object classification. 
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Datasets for small metal objects were created through personal experimentation, containing 2500 

images of different metal types. These datasets include images of coins, keys, paper clips, nuts, and 

screws, with 500 images for each category. These images are used for classification analysis. Data 
collection encompasses the process of acquiring information from small metal objects, 
emphasizing both quality and relevance. Through meticulous planning, potential biases are 
minimized, integrity is upheld, and privacy is maintained. The experiment conducted in this 
context entailed gathering data about small metal objects utilizing cameras. For this study, keys, 
coins, nuts, paper clips, and screws were utilized to represent the small metal objects. 

 
The adoption of a white background aimed to reduce image noise. Figure 1 shows the experiment 
setup for this study. The process of data collection entails the acquisition of information from 
small metal objects, with a focus on maintaining quality and relevance. Through meticulous 
planning, biases are mitigated, integrity is upheld, and privacy is safeguarded. Data preprocessing 
encompasses the transformation of raw data into a suitable format that can be effectively utilized 
by machine learning algorithms. The images obtained from the collection of small metal objects 
underwent preprocessing steps, including cropping and resizing, facilitated by MATLAB, for data 
augmentation. Subsequently, the resized images were systematically organized into distinct 
folders corresponding to their respective class labels. Table 1 provides an overview of the types 
and quantities of small metal objects employed in this study, with class labels denoting the data 
types as indicated in the table. 

 
Table 1 Number of Samples for Each of Small Metal Object 

 
Object Type  No. of samples 

Key (K)  500 

Nut (N)  500 

Paper Clip (P)  500 

Screw (S)  500 

Coin (C)  500 

 TOTAL 2500 

 

 

 
Figure 1. Experiment setup for data collection 

 
 
 
 
 
  48 
 



      Nur Safariah Inani bt M. Tahir et al./ Small Metal Objects Classification Based on The Deep Learning…  

The classification process parameters are configured, with a focus on altering the optimizer in 
this study. The initially utilized ResNet-50 model will be substituted with a CNN model. The 
datasets will undergo training using the CNN model, employing an appropriate number of epochs, 
and the training process is expected to conclude within a few minutes. Upon the successful 
completion of the training process, three classification outputs will be generated: accuracy and 
loss graphs, a comprehensive data overview, and a confusion matrix. The implementation of the 
Small Metal Object Classification with a Deep Learning Approach necessitates a flowchart project. 
Convolutional Neural Networks (CNNs) are employed for classification. The architecture and 
design of CNNs, including Convolution, Pooling, and Fully Connected layers, are discussed. The 
application of the ResNet-50 model to improve classification accuracy is highlighted. 

 
In conclusion, accuracy, recall, F1-score, and the confusion matrix are crucial metrics to take into 
account when assessing the performance of a model trained to classify small metal objects using 
a Convolutional Neural Network (CNN). Recall evaluates the model's capacity to identify all 
occurrences of positives, while precision measures the accuracy of positive predictions, and the 
F1-score provides a balanced assessment of the model's performance. The model's overall 
performance can be evaluated using the confusion matrix, which provides comprehensive 
information about the model's true positives, true negatives, false positives, and false negatives. 
All of this information will first be saved as a PNG picture file. The emphasis will be on classifying 
small metal objects, and the results will be documented and discussed in the following chapter. A 
classifier is provided with the datasets for classification training and testing. Convolutional 
Neural Network (CNN) technology will be used to categorize the data. Figure 2 illustrates the 
process to accomplish Small metal object classification approach. 

 

 
Figure 2. Small metal object classification approach 
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3. RESULT AND DISCUSSION 
 

The classification outcome is based on datasets of small metal object images. In this study, we 
employ the Convolutional Neural Network (CNN) deep learning method, thus the focus of the 
outcome will be on this area. The performance evaluation of various types of optimizers has been 
compared and discussed in the subsequent sub-chapter. 

 
 

3.1 Result with Optimizer Adam 
 

The testing and training are conducted using a Google Collaboratory server. The CNN model 
ResNet-50 classifier is tested using the Small Metal Object Image datasets. The goal of this 
research is to determine the values of the F1-score, recall, accuracy score, and any other 
associated outputs. These classification processes were applied with different deep-learning 
optimizers, and data on precision, recall, and F1-scores were collected [10]. Table 2 shows 
Execute Satisfied Data (Precision, Recall, F1-score) for Optimizer Adam. 
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The provided table furnishes a comprehensive analysis of the performance of a classification 
model in categorizing small metal objects into five distinct classes: Coin, Key, Nut, Screw, and 
Paper Clip. Each class's assessment includes metrics such as Precision, Recall, F1-score, and 
support. An overview of the model's overall effectiveness is presented through indicators like 
Accuracy, Macro average, and Weighted average. 

In the "Support" column, the instance counts for each class are displayed. All five classes—Coin, 
Key, Nut, Screw, and Paper Clip—comprise 100 instances each, resulting in a total of 500 
instances within the dataset. The "Accuracy" row signifies the proportion of correctly classified 
instances among the entire dataset, yielding an overall model accuracy of 86%. 

The loss value of a model serves as an indicator of its performance after each optimization 
iteration. The assessment of the algorithm's performance employs a straightforward and 
accurate metric [7]. Graphs originating from diverse results based on distinct optimizers are 
showcased. Figure 3 portrays the accuracy and loss graph depicting the performance of the 
proposed model using the Adam optimizer. 

 
 
 

 
 

Figure 3. Accuracy and Loss Graph for Optimizer Adam 

 
 

An accuracy and loss graph serves as a tracking tool for monitoring the training and validation 
accuracy of a machine-learning model across multiple epochs. A training accuracy of 1.0 
suggests optimal performance on the training data, often associated with complex models 
memorizing the data or overfitting when dealing with smaller datasets. A low training loss, such 
as 0.1, indicates successful mitigation of prediction inaccuracies. The variability in validation 
accuracy throughout epochs highlights the model's generalization capacity. Early high accuracy 
indicates the presence of valuable training patterns. Overfitting, characterized by models 
memorizing training data, results in subpar performance on validation data.  

 
The "train-validation gap" exposes the extent of overfitting, with a wider gap implying higher 
overfitting [11]. Validation loss is a measure of model generalization. Early low loss signifies 
effective pattern learning; as training advances, overfitting may occur. The fluctuations in 
validation loss arise due to the uncertainties in the optimization process and variations in the 
distribution of validation data [7]. 

Confusion matrices hold significant prominence in addressing classification challenges, serving 
as a widely used evaluation tool. It applies to both binary and multi-class classification 
problems. In the context of the proposed model, the confusion matrix elucidates the count of 
correctly classified images within the test images. Figure 4 provides insight into the confusion 
matrix pertaining to the Adam optimizer. Notably, the "Nut" and "Paper Clip" classes achieved 
100% accuracy, while challenges persist in distinguishing between the "Key" and "Screw" 
classes. 
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Figure 4. The confusion matrix of Adam 
 

3.2 Result with Optimizer SGD 
 

Table 3 provides a comprehensive overview of the executed satisfactory data, encompassing 
precision, recall, and F1-score for the Optimizer SGD. Each class—Coin, Key, Nut, Screw, and 
Paper Clip— comprises 100 instances in this scenario, resulting in a total of 500 instances within 
the dataset. The "Accuracy" row presents the proportion of accurately classified cases (the 
cumulative count of true positives and true negatives) among all instances, thus providing the 
overall accuracy of the model. In this instance, the model demonstrated an accuracy of 0.78, 
equivalent to 78%. 

 
Table 3. Execute Satisfied Data (Precision, Recall, F1-score) 

 

 

Objects 

 
 
 
 
 
 
 

 
Figure 5 visually illustrates the progress of training accuracy, escalating from 0.2 to 0.99. This 
upward trajectory signifies the model's gradual improvement in classifying training data with 
each epoch. The concurrent ascent of validation accuracy denotes the model's successful 
generalization to new data. A minor dip in validation accuracy is expected as the model adapts 
beyond its training data. When validation and training accuracy align closely, it indicates 
commendable generalization, mitigating the risk of overfitting. The graph further showcases the 
descent of training loss, diminishing from 1.65 to 0.00. This reduction underscores the effective 
mitigation of prediction errors and signifies the model's better fit to the training data. Validation 
loss exhibits fluctuations while maintaining a downward trend, denoting the model's overarching 
learning process and its improved ability to generalize to novel data. Contrastingly, Figure 6 
portrays the confusion matrix for the Optimizer SGD. The model exhibits strong performance in 
classes such as "Coin," "Key," "Nut," and "Paper Clip," boasting high precision and recall values. 
However, in the "Screw" class, a low F1-score suggests an area for potential enhancement. The 
confusion matrix serves as a valuable resource, offering insights on a per-class basis that 
contribute to refining the model and addressing challenges in classification tasks. 
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Small Metal Precision Recall F1-score Support 

Coin 0.84 0.99 0.91 100 
Key 0.59 1.00 0.74 100 
Nut 0.84 1.00 0.91 100 

Screw 0.91 0.10 0.18 100 
Paper Clip 1.00 0.83 0.91 100 

Accuracy 
Macro avg 0.84 0.78 

0.78 
0.73 

500 
500 

Weighted avg 0.84 0.78 0.73 500 
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Figure 5. Accuracy and Loss Graph for Optimizer SGD 
 

 

  
 

Figure 6. The Confusion matrix of SGD 

 
3.3 Result with Optimizer RMSprop 

 
Table 4 presents the performance metrics for the "Coin" class, demonstrating a precision of 72%, 
indicating 72% accurate predictions. It accomplished a 100% recall, correctly identifying all 
instances of the "Coin" class. Each of the classes—Coin, Key, Nut, Screw, and Paper Clip— 
comprised 100 instances, culminating in a total of 500 instances. The overall accuracy of the 
model was measured at 75%. Under the "Macro avg" category, the precision, recall, and F1-score 
averages were computed at 0.72, 0.75, and 0.71, respectively. The "Weighted average" takes into 
account metrics weighed by instance occurrences, leading to precision, recall, and F1-score values 
of 0.72, 0.75, and 0.71 respectively. 

 
Table 1 Execute Satisfied Data (Precision, Recall, F1-score) for Optimizer RMSprop 

 
 

Small Metal 

 
Precision Recall F1-score Support 

Objects  

Coin 0 1.00 0.8 100 

Key 0 0.80 0.6 100 

Nut 1 1.00 1.0 100 

Screw 0 0.10 0.1 100 

Paper Clip 1 0.83 0.9 100 

Accuracy   0.7 500 

Macro avg 0 0.75 0.7 500 

Weighted avg 0 0.75 0.7 500 
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Moving to Figure 7, the graph illustrates the rapid initial growth of training accuracy from 0.65 
to 1.00 within the first three epochs. This indicates the model's swift learning and precise 
classification of training data. Subsequently, from epoch 3 to 30, the training accuracy maintains a 
consistent 1.00, reflecting consistently accurate predictions. In contrast, validation accuracy 
fluctuates between 0.80 and 0.75 during the course of training, suggesting less consistent 
generalization than observed in the training accuracy. Regarding training loss, there is a notable 
reduction from 2.00 to 0.00 within the first three epochs, highlighting effective error minimization. 
On the other hand, validation loss experiences a slight increase from 0.50 (epoch 0) to 0.50 (epoch 
30), with oscillations indicating variability in generalization. This situation calls for caution against 
overfitting, potentially warranting the implementation of regularization techniques or early 
stopping mechanisms. 

 
 
  

 

Figure 7. Accuracy and Loss Graph for Optimizer RMSprop 

 
Figure 8 shows the confusion matrix for Optimizer RMSprop and provides insightful information 
about the model's performance for each class, which can be utilized to improve the model or 
handle particular classification task issues. The model appears to perform well in the classes 
"Coin," "Key," "Nut," and "Paper Clip," obtaining high precision, recall, and F1-score for those 
classes, according to this confusion matrix. For class "Screw," where the F1-score is low, the model 
performs relatively worse, indicating an opportunity for development. As mentioned before, 
Optimizer Adam provides the highest accuracy result of classification. The confusion matrix 
illustrated how much data was correctly predicted after the classification process had been 
applied. The confusion matrix was one of the pieces of evidence to show the performance 
classification of small metal objects. 

 

 

Figure 8. The Confusion matrix of Optimizer RMSprop 
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4. CONCLUSION 
 

The datasets have been meticulously partitioned into three distinct, non-overlapping subsets: the 
training set, the validation set, and the testing set. Within this division, 70% of the data is allocated 
for the training set, with the remaining 30% reserved for the testing data. The training set 
assumes the role of training the CNN model, the validation set aids in refining hyperparameters 
and shaping design choices, while the testing set serves as the platform to evaluate the ultimate 
performance of the model. From the outcomes, it becomes evident that the Adam optimizer 
achieves the highest accuracy of 86%, whereas both the Adam and SGD optimizers result in 
slightly lower accuracies of 78% and 75% respectively. This deduction is affirmed by both the 
confusion matrix and the accuracy values, derived from the classification of 500 datasets through 
CNN utilizing diverse optimizers. The main objective of this study revolves around evaluating the 
efficacy of a CNN classifier technique when applied to a dataset comprising small metal objects. 
This small metal dataset necessitates meticulous scrutiny and preprocessing, including cropping, 
which ultimately contributes to heightened accuracy compared to unprocessed classification. 
Image resizing is necessitated by factors such as memory constraints, the lack of inherent 
improvement in CNN performance with larger images, potential reduction in batch sizes leading 
to prolonged training times, and the necessity to align image dimensions with classifier 
specifications, particularly when employing pre-trained models. In this investigation, 
Convolutional Neural Networks (CNNs) were chosen as the classifier model. Among the multitude 
of CNN variants, the ResNet-50 model was specifically selected to enhance the classification 
outcomes. The architecture of the CNN plays a pivotal role in training datasets encompassing 
diverse models, essentially influencing the accuracy of the output. The utilization of the confusion 
matrix, which effectively quantifies the number of datasets that were inaccurately predicted, 
stands as an optimal choice for analysis, offering insights into the classification results and serving 
as a direct indicator of the model's accuracy. The conclusions derived from this study underscore 
the pivotal role of data volume in achieving classifications characterized by high accuracy. 
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