
A High Speed and Well-Structured Partial Product
Generator for Parallel Multiplier

R. CHE ISMAIL1, BECKETT P.2

1 School of Microelectronics Engineering, Univerisiti Malaysia Per/is (Unil\1AP),
Pusat Pmgqjian JejatJJi,02600 Anm, Per/is, Malaysia.

2 Schoo/ of Electrical and Computer Eng., Rqyal Melbourne Institute of Technology (RMIT),
StJJanston St., Jv1elbourne, 3001 Victoria, Australia.

1 rizalafande@unimap.edu.my

ABSTRACT
Previousfy reported multiplication a{gorithms mainfy focus on rapidfy reducing the partial product rows down to
final sums and canies used for the final accumulation. In this paper, an efficient approach for partial product
generator is presented. The approach focuses on reducing the number if partial product rows bJ' peiformin,g the
flpo ~r complement operation even b~fore appfyingpartial products reduction techniques. Consequmtfy, this directfy
influences the speed if the multiplication as well as the area if the circuits.

INTRODUCTION
Arithmetic operations nor~l!'911ydominate the execution time of most DSP algorithms and
currently the time it takes to execute a multiplication operation is still the dominating
factor in the determining the instruction cycle time of a DSP chip and Reduced Instruction
Set Computers (RISC) [8]. Therefore, there has been much work done on advanced
multiplication algorithms and designs [2],[15].

In any multiplication process, there are three major steps required. In first step, partial
product rows are generated. Then, the additions of partial products are performed until
they are reduced to one row of final sums and one row of carries. Finally, these two rows
are added together to generate the result. Modified Booth Encoding (MBE) is the most
famous design technique use in the first step [3,6,1 0] because of its capability to reduce
the number of partial product rows in half. In the second step, the Wallace tree structure
[1 0], [5] is the most widely used architecture to rapidly reduce the number of partial
products to the final two rows. In performing the addition process for the final step, the
fast adders such as carry look ahead, carry-select or carry save addition adders are well
suited for the implementation [l, 14].

The basic goal of this paper is to propose an efficient approach for generating the partial
product rows based on the partial product generator which then suitable for high
performance parallel multiplier. The proposed technique is done by performing the two's
complement operation even before applying partial products reduction procedures. By
having fewer partial product rows, the reduction tree can be smaller in size and faster in
speed. The design is structured for 8-bit words as it is one of the most commonly used
word sizes in the kernels of most multimedia applications [13]. Based on the performance
evaluation, the speed of the system can be greatly increased by 6-8% as compared to
the conventional and Kang's method. On top of that, the total area usage can also be

---'c-~- -------------

optimized by more than 30% when it is implemented in the final architecture of the
parallel multiplier.

The paper is divided into 5 sections. In the following section (Section 2), we present the
algorithm of multiplication. In Section 3, the design of architecture is discussed. Simulation
and synthesis details are presented in Section 4 and conclusions in Section 5.

ALGORITHM OF MULTIPLICATION
There are many existing methods that can be used in performing the multiplication
precess. Among them are shift and add, Booth multiplication [2], signed number [11] and
redundant binary arithmetic techniques [12]. Booth multiplication is one of the proven
techniques that allows for smaller, faster multiplication circuits, by receding the numbers ·
that are multiplied [17].1t is also the standard technique employed in FPGA designand
provides significant improvements over the"long multiplication" technique.

Radix-4 Modified Booth Algorithm
The main reason of choosing Radix-4 Modified Booth Algorithm is because of its ability to
reduce the number of partial products by half. The basic ideas is that, instead of shifting
and adding using shift and add technique, the multiplier bits are grouping as shown in
Figure 1 and basically based on a window size of 3-bit and a stride of 2 [17]. The multiplier
(Y) is segmented into groups of three bits (y2;+ 1, y2;, y2;-1) and each such group of bits
is associated with its own partial product row by using Table 1 [9]. In this grouping,
considered y-1 = 0.

·Group-O

Figure 1. Multiplier bits grouping according to Booth recording for 8-bit input [13]_

Table 1. Radix-4 Modified Booth Recording [9]_

Generated
Yzi+l Yi; Y2H Partial Products

0 0 0 0 *Multiplicand

0 0 1 1 * Multiplicand
0 1 0 1 * Multiplicand
0 l 1 2 * Multiplicand
1 0 0 -2 * Multiplicand
l 0 l -1 * Multiplicand
l 1 0 -1 *Multiplicand
1 1 1 0 * Multiplicand

_, ___:_ ____ -------~--------- - --· --- ---~------------- -'--- ---------··----- --~-~-

By implementing this technique, the numbers of partial product rows to be accumulated
can be reduced from llto ll/2. For example, when we are designing an 8x8-bit multiplication
using Radix-4 Modified Booth Algorithm, only four {ll/2=4) partial products are generated
as shown in Figure 2 compared with using shift and add technique whereby need
to generate eight partial product rows. This is important in circuit design as it relates
to the propagation delay in the running of the circuit and the complexity and power
consumptions of its implementation.

However, to be clear, there are actually {ll/2) + 1 partial product rows generated rather
than ll/2. This is because of the last negation signals are needed due to Radix-4 Modified
Booth Algorithm may generate a negative encoding. Due to that, one additional carry
save addition stage is required to perform the reduction process and this may lead to the
overhead while implementing the negative encodings.

Therefore, the goals is to remove all the two's complement error correction signals which
would then prevent the extra partial product row and thus save the time of an additional
carry save adding stage and the hardware required for the additional carry save adding.

1-.=.-f ... J\ M_. ;....;, +,. ;;, • :;p. . ·,;, ;:;;~o<il~· · -.... ~)0-.<Y;;.f;,!>" P::'t'=l. _u;;.t;'--.. v.V;~-; ~·0.-..~ ;./D.:,; p-. __ .,., .. .P:•).,;_ I ...i:..l. (l:.~.- .J,. ,,,.., ... ~ • .f. ""·~ ... ,.,;<-,.r.,J._-,.._....,.,!_ .:~,·J.. ,.,~ ~~-- ~,.., --r-' . n~, ·+=~~~~~----~

A pru:tial pmduct

Figure 2. The array of partial product rows for signed multiplication using Radix-4 Modified Booth Algorithm conventional
technique.

Prevention of Signed Extension
Based on the conventional technique for signed multiplication, the sign bit of partial
product row would have to be extended all the way to the MSB position (as shown in
Figure 2) which would then require the sign bit to drive that many output loads (each
bit position until the MSB should have the same value as sign). As a result, the partial
product rows will be unequal in length. In order to avoid this situation, Ercegovac [15]
has proposed a new method whereby the sign extension can be removed as shown in
Figure 3. Therefore, the sign extension prevention method proposed by Ercegovac has
been adopted.

J4 ~ ·~ l<t J;·l; ~. ~ .
X Y'f Y., Y$ Y~ Y3 Y2 Yu Yi}

fthPP.~~PP$H~PP·~PhiPP~o~
1 PAd/JstPA~PPraPP~PAT,~PPttPAt . ~

_ ~~PPnP.P~!t}.PP~J;~~PPul'Aa. ~~
1JP.PPtt~PP~PPtl5·PP4'!PP.PhPPt~PPm m"A

JJ5

Figure 3. Sign extension prevention method [15].

DESIGN OF ARCHITECTURE
However, the sign extension prevention method introduced by Ercegovac still has the
problem of having the last negation signal and this may leads to generate another carry
save adder delay in order to perform the final accumulation process.

Therefore, the architecture introduced in this paper will help to prevent the extra partial
product row thus save the time of one additional carry save adding stage and the hardware
required for the additional carry save adding. We noticed that by performing the two's
complement operation even before applying partial products reduction techniques will
ensure there is none extra partial product row required. As a result, an easy and efficient
design methodology in generating partial product rows is presented as shown in Figure
4.

Multiplier

Multiplicand

Booth
Recording

P mi al Product Gen er3l:or
Partial Product Generator

~-----------------------------,
I I
I I

I
I

Mux 5 to 1 J----+1---+ Pi!rtial Product

I Row
I

I · I L _____________________________ j

Figure 4. The block diagram of partial product generator.

~:-------·----------·~-.
------, ~ ~- -----------~-~----------...---------..-~

Partial Product Generator
For any multiplication of signed numbers using Booth algorithm technique, two's
complement operation is needed due to the possibility of generating negative encodings.
Generally, the two's complement of an integer is obtained by complementing individual
bits and then adding one to the number. Based on the conventional technique, two's
complement numbers may be accommodated by simply inverting the negative operands
or by so-called post-complementation of the negative results. Then, the error is adjusted
using a correction factor applied at the Wallace tree structure on each of partial product
rows. As a result, one additional carry save adding stage is needed to perform that
operation.

Different with the approach introduced here, the product generator circuit has been
designed (using VHDL code) in such a way that it will perform directly two's complement
operations. Therefore, this would prevent the extra partial product row due to unused of
correction circuits to accommodate the negative encodings.

Multiplexers are used to make a selection whether the number for each of rows are from
either -1 *Multiplicand, 2*Multiplicand, -2*Multiplicand, 1 *Multiplicand or all zeros which
based upon the output driven from Radix-4 Modified Booth Recording. There are four
multiplexers generated to accommodate the 8-bit multiplication process. The outputs
from each ofthe multiplexers are then connected to Wallace tree structure for performing
the addition operation.

By implementing this technique, the partial product rows will no longer required two's
complement error correction circuits as well as last negation signal as shown in Figure 5.

2S ·:lfu x5 x4 ... ··.···~ ·Xz xt ~
X y'l y6 y5 y4 Y;r Yz yl Yo

PPEo PPr.oPPEoPP10PP6oPPso JtJP40PPMPP21!PP1oPPo6
t·· "fifhPPnPPtaPPslPP4rPPnPP2J.·PPuPPol

t/Pr.zPPnJvP6zPPs'l,PP.nPP~iPPZ'lPPl'l. PPoa
lJPE~·PPn PPnPP'J~PPJ·~£vpl>~PP~PPl~PPol>

Figure 5. The addition structure of 8x8-bit signed multiplication.

Multiplier Architecture
By applying the method we just described for generating partial product rows, the
multiplication can have a smaller critical path. The critical path column which initially with
(IV2) + 1 elements (Figure 3), now have only 11/2 elements (Figure S).This directly influences
the speed of the multiplication as well as the area of the circuit. Figure 6 shows the
multiplier architecture in generating the partial products for 8x8-bit signed multiplication
operation.

Multiplier

Partial Product
Generator --------,

I
I pp,.pp.,pp,.pp,.ppo.pp,,.pp,.pp,,pp,.pJ).,pp.,

Partial·
Product Rows

f-+--~ 1]1),.pp,..pp.,pp,,pp,.pp.,pp..ppu;pp,,

r---.J
I ,--L--,
I
I
I
I
I

I ""-,.--'
L~~J!i.E.I~~~r!._ __ _

Figure 6. Multiplier architecture.

PERFORMANCE EVALUATION
In this section, the performance evaluation of the proposed design is done by comparing
it with the two existing design technique in generating partial product rows as described
in [7]. The investigation focused on the critical path delay and FPGA area utilization of.
using the proposed architecture as compared to previous methods. Table 2 depicts the
simulation parameters used in this study.

-----,------------------,-.-·----------·

Journal

Table 2. Simulation parameters.

CAD tools : Xilinx ISE version 5.2i
FPGA Target Device : Xilinx Virtex II Pro
Device ID : 2vp2ff672-6
Optimization criteria: Speed
Speed Grade :-6

Critical Path
Table 3 shows the critical path delay for each of the related components in generating
the partial product rows based on the conventional method, Kang's technique in [7]
as well as the proposed architecture. In generating the partial product rows based on
the conventional method, the maximum critical path delay required is about 16.423 ns
whereby two main components involved which are MBE and product generator. However,
the proposed design technique done by Kang in [7] will take about 17.126 ns to select
the correct value for the last partial product row for up to 17-bit and this obviously more
than the conventional method. Kang had not considered the delay for the MBE and 3~5
decoder because it is incurred in parallel with the delay of two's complementation (and is
faster than it) and therefore masked by it.

For the proposed architecture described in this paper, there are three components known
as MBE, product generator and Mux 5-1 selector required in generating the partial product.
Based on the simulation results, the proposed architecture takes approximately 15.813 ns
(MBE + Mux 5-1 selector) which is 0.61 ns less than conventional technique and faster
1.313 ns than the Kang's technique. Note that the delay for product generator has not
been considered due to it is incurred simultaneously with the delay of MBE and in fact it is
faster than it. Therefore, it has been masked by the MBE circuit. Figure 7, 8 and 9 depict the
gate-level circuits for each of the components.

Table 3. Critical path delay in generating partial product rows.

Y2i~
Y2i-1)z___/ >------------,--One

Y2i+1~··········.····· ... ·' Y2i
Y2i-1. -

Y2i--------l

Y2i-1~~------i

Figure 7. Gate-level diagram of MBE.

Multiplicand [i ... 01

Positive Two [i. .. OI Negative Two [i ... OI Negative Oneli .. 01

(a) Details of product generator circuit.

Figure 8. Gate-level diagram of product generator.

----Neg

lnput[il lnput[11 lnputiOI Bit 1

'

Output[il Output[OI

(b) Details of adder circuit.

Negative One Negative Two Positive Two Positive One
f-1) (-2) (+2) (+1)

One

Two

Neg

Partial Product

Figure 9. Gate-level diagram of Mux 5-1 selector.

Area Utilization
The evaluation of hardware requirements will be in terms of the total cell usage on Xilinx
Virtex II Pro FPGA board adopted from the synthesis report using simulation parameters
described in Table 2. Table 4 shows the total cell usage obtained in generating the partial
product rows for each ofthe design technique.

Table 4. Total cell usage in generating the partial product rows.

It turns out that the proposed method requires fewer cells in total compared with the
Kang's method in generating partial product rows. Although it consumes more cells than
the conventional method, it still considered Jess area usage due to the proposed method .
does not required an additional partial product row whilst performing the addition
operation whereby the conventional method still required one extra partial product
row. Forthat particular extra row, it is actually consumes the same amount of hardware
of two full-adder circuits. Thus, by implementing the proposed system, not only the
speed advantage but also area utilization may be optimized and well balanced for any
multiplication sizes. As a conclusion, having one additional partial product row as well as
the use of error correction circuits not only brings to performance degradation but also
more hardware usage.

CONCLUSION
In this paper, we have presented the partial product generator architecture which capable
to reduce the number of partial product rows from (IV2) + 1 to 11/2 at the first step of a
multiplication process. By doing so, the structure of partial product becomes easier to be
added for the final accumulation. Furthermore, by having fewer partial products, its not
only can reduced the area of the circuit but also at the same time increase the speed of the
system due to the major source of delay in adders is consumed from the carries numbers
[16].

In order to completely validate this method, future work would be to design the fast
adders which can perform the final accumulation process based on the partial product
rows generated. From this, a complete design of multiplier can be produced and hence
could be evaluate its performance and compare it with other design approaches.

REFERENCES

1. A G. D. Oscar Gustafsson, L. W. (2001). Multipliers Block Using Carry Save Adders.Proc.
IEEE Int. Symp. Circuits -D-'st., 472-476.

2. Booth, A. D. (1951). A Signed Binary Multiplication Technique. Quartefy J Mechanical and
Applied Math, 236-240.

3. B. M.P. E. Madrid, E. E. S. (1993). Modified Booth Algorithm for High-Radix Fixed Point
Multiplication. IEEE Transactions on Very Large Scale Integration (VLS'I) Sj1stems, vol. 1 (2),
164-167.

4. Ercegovac, T. L. M.D. (2003). Digital Arithmetic. California, USA: Morgan Kaufmann
Publishers.

5. ltoh, Y. H. N. (2001). A 600 MHz 54x54-bit Multiplier with Rectangluar Styled Wallace .
Tree. IEEE Journal rif Solid State Circuits, voL36(No.2),249,-257.

~~~-····---~---·-·--



6. J. H. J. Kenneth Lin, N. T. (2003). A High-Performance 32-bit Parallel Multiplier Using 
Modified Booth Algorithm and Sign Deduction Algorithm. IEEE Proceedings, t'ol. 
0-7803-7889-X, 1281-1284. 

7. Kang, J. L. G.J. Y. (2004). A Fast and Well-Structured Multiplier. EUROMICRO Systems on 
Digital S)stem Design, 692-701. 

8. Kung, S. Y. (1998). VL51 Arr~ Processors. New York: Prentice Hall. 

9. MacSorely, 0. L. (1990). High Speed Arithmetic in Binary Computation. IEEE 
Proceedings, Z'OI. 49,67-91. 

10. Othman, A.M. A. L. M. (2002). High Performance Parallel Multiplier Using Wallace­
Booth Algorithm. IC.SE2002 Proc. Penang, 433-436. 

11. Robertson, J. E. (1955). Two's Complement Multiplication in Binary Parallel Digital 
Computers. IRE Trans., vol. EC4, 118-119. 

12. Shin, B.S. S. K. Y. (1997). A Complex Multiplier Architecture Based on Redundant Binary 
Arithmetic. IEEE Intemational Symposium om Circuits and S)stems, 1944-1947. 

13. Slingerland, A. J. S. N. (2002). Measuring the Performance of Multimedia Instruction 
Sets. IEEE Transactions on Computers, t1ol. 51 (11), 1317-1332. 

14. T. K. William Jao, S. T. (1998). Circuit Optimization Using Carry Save-Adder Cells. IEEE 
Transactions on Computers-Aided Design of Integrated Cimtits and S)stems, t'OI. 17, 97 4-984. 

15. Wallace, C. S. (1964). A Suggestion for a Fast Multiplier. IEEE Transadions on Computm~ 
14-17. 

16. Winograd, S. (1965). On the Time Required to Perfom Addition. journal of the ACM, 
vol. 12(2), 277-285. 


