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ABSTRACT 
Previousfy reported multiplication a{gorithms mainfy focus on rapidfy reducing the partial product rows down to 
final sums and canies used for the final accumulation. In this paper, an efficient approach for partial product 
generator is presented. The approach focuses on reducing the number if partial product rows bJ' peiformin,g the 
flpo ~r complement operation even b~fore appfyingpartial products reduction techniques. Consequmtfy, this directfy 
influences the speed if the multiplication as well as the area if the circuits. 

INTRODUCTION 
Arithmetic operations nor~l!'911ydominate the execution time of most DSP algorithms and 
currently the time it takes to execute a multiplication operation is still the dominating 
factor in the determining the instruction cycle time of a DSP chip and Reduced Instruction 
Set Computers (RISC) [8]. Therefore, there has been much work done on advanced 
multiplication algorithms and designs [2],[15]. 

In any multiplication process, there are three major steps required. In first step, partial 
product rows are generated. Then, the additions of partial products are performed until 
they are reduced to one row of final sums and one row of carries. Finally, these two rows 
are added together to generate the result. Modified Booth Encoding (MBE) is the most 
famous design technique use in the first step [3,6,1 0] because of its capability to reduce 
the number of partial product rows in half. In the second step, the Wallace tree structure 
[1 0], [5] is the most widely used architecture to rapidly reduce the number of partial 
products to the final two rows. In performing the addition process for the final step, the 
fast adders such as carry look ahead, carry-select or carry save addition adders are well 
suited for the implementation [l, 14]. 

The basic goal of this paper is to propose an efficient approach for generating the partial 
product rows based on the partial product generator which then suitable for high 
performance parallel multiplier. The proposed technique is done by performing the two's 
complement operation even before applying partial products reduction procedures. By 
having fewer partial product rows, the reduction tree can be smaller in size and faster in 
speed. The design is structured for 8-bit words as it is one of the most commonly used 
word sizes in the kernels of most multimedia applications [13]. Based on the performance 
evaluation, the speed of the system can be greatly increased by 6-8% as compared to 
the conventional and Kang's method. On top of that, the total area usage can also be 
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optimized by more than 30% when it is implemented in the final architecture of the 
parallel multiplier. 

The paper is divided into 5 sections. In the following section (Section 2), we present the 
algorithm of multiplication. In Section 3, the design of architecture is discussed. Simulation 
and synthesis details are presented in Section 4 and conclusions in Section 5. 

ALGORITHM OF MULTIPLICATION 
There are many existing methods that can be used in performing the multiplication 
precess. Among them are shift and add, Booth multiplication [2], signed number [11] and 
redundant binary arithmetic techniques [12]. Booth multiplication is one of the proven 
techniques that allows for smaller, faster multiplication circuits, by receding the numbers · 
that are multiplied [17].1t is also the standard technique employed in FPGA designand 
provides significant improvements over the"long multiplication" technique. 

Radix-4 Modified Booth Algorithm 
The main reason of choosing Radix-4 Modified Booth Algorithm is because of its ability to 
reduce the number of partial products by half. The basic ideas is that, instead of shifting 
and adding using shift and add technique, the multiplier bits are grouping as shown in 
Figure 1 and basically based on a window size of 3-bit and a stride of 2 [17]. The multiplier 
(Y) is segmented into groups of three bits (y2;+ 1, y2;, y2;-1) and each such group of bits 
is associated with its own partial product row by using Table 1 [9]. In this grouping, 
considered y-1 = 0. 

·Group-O 

Figure 1. Multiplier bits grouping according to Booth recording for 8-bit input [13]_ 

Table 1. Radix-4 Modified Booth Recording [9]_ 

Generated 
Yzi+l Yi; Y2H Partial Products 

0 0 0 0 *Multiplicand 

0 0 1 1 * Multiplicand 
0 1 0 1 * Multiplicand 
0 l 1 2 * Multiplicand 
1 0 0 -2 * Multiplicand 
l 0 l -1 * Multiplicand 
l 1 0 -1 *Multiplicand 
1 1 1 0 * Multiplicand 
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By implementing this technique, the numbers of partial product rows to be accumulated 
can be reduced from llto ll/2. For example, when we are designing an 8x8-bit multiplication 
using Radix-4 Modified Booth Algorithm, only four {ll/2=4) partial products are generated 
as shown in Figure 2 compared with using shift and add technique whereby need 
to generate eight partial product rows. This is important in circuit design as it relates 
to the propagation delay in the running of the circuit and the complexity and power 
consumptions of its implementation. 

However, to be clear, there are actually {ll/2) + 1 partial product rows generated rather 
than ll/2. This is because of the last negation signals are needed due to Radix-4 Modified 
Booth Algorithm may generate a negative encoding. Due to that, one additional carry 
save addition stage is required to perform the reduction process and this may lead to the 
overhead while implementing the negative encodings. 

Therefore, the goals is to remove all the two's complement error correction signals which 
would then prevent the extra partial product row and thus save the time of an additional 
carry save adding stage and the hardware required for the additional carry save adding. 
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Figure 2. The array of partial product rows for signed multiplication using Radix-4 Modified Booth Algorithm conventional 
technique. 

Prevention of Signed Extension 
Based on the conventional technique for signed multiplication, the sign bit of partial 
product row would have to be extended all the way to the MSB position (as shown in 
Figure 2) which would then require the sign bit to drive that many output loads (each 
bit position until the MSB should have the same value as sign). As a result, the partial 
product rows will be unequal in length. In order to avoid this situation, Ercegovac [15] 
has proposed a new method whereby the sign extension can be removed as shown in 
Figure 3. Therefore, the sign extension prevention method proposed by Ercegovac has 
been adopted. 
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Figure 3. Sign extension prevention method [15]. 

DESIGN OF ARCHITECTURE 
However, the sign extension prevention method introduced by Ercegovac still has the 
problem of having the last negation signal and this may leads to generate another carry 
save adder delay in order to perform the final accumulation process. 

Therefore, the architecture introduced in this paper will help to prevent the extra partial 
product row thus save the time of one additional carry save adding stage and the hardware 
required for the additional carry save adding. We noticed that by performing the two's 
complement operation even before applying partial products reduction techniques will 
ensure there is none extra partial product row required. As a result, an easy and efficient 
design methodology in generating partial product rows is presented as shown in Figure 
4. 
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Figure 4. The block diagram of partial product generator. 
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Partial Product Generator 
For any multiplication of signed numbers using Booth algorithm technique, two's 
complement operation is needed due to the possibility of generating negative encodings. 
Generally, the two's complement of an integer is obtained by complementing individual 
bits and then adding one to the number. Based on the conventional technique, two's 
complement numbers may be accommodated by simply inverting the negative operands 
or by so-called post-complementation of the negative results. Then, the error is adjusted 
using a correction factor applied at the Wallace tree structure on each of partial product 
rows. As a result, one additional carry save adding stage is needed to perform that 
operation. 

Different with the approach introduced here, the product generator circuit has been 
designed (using VHDL code) in such a way that it will perform directly two's complement 
operations. Therefore, this would prevent the extra partial product row due to unused of 
correction circuits to accommodate the negative encodings. 

Multiplexers are used to make a selection whether the number for each of rows are from 
either -1 *Multiplicand, 2*Multiplicand, -2*Multiplicand, 1 *Multiplicand or all zeros which 
based upon the output driven from Radix-4 Modified Booth Recording. There are four 
multiplexers generated to accommodate the 8-bit multiplication process. The outputs 
from each ofthe multiplexers are then connected to Wallace tree structure for performing 
the addition operation. 

By implementing this technique, the partial product rows will no longer required two's 
complement error correction circuits as well as last negation signal as shown in Figure 5. 
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Figure 5. The addition structure of 8x8-bit signed multiplication. 



Multiplier Architecture 
By applying the method we just described for generating partial product rows, the 
multiplication can have a smaller critical path. The critical path column which initially with 
(IV2) + 1 elements (Figure 3), now have only 11/2 elements (Figure S).This directly influences 
the speed of the multiplication as well as the area of the circuit. Figure 6 shows the 
multiplier architecture in generating the partial products for 8x8-bit signed multiplication 
operation. 
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Figure 6. Multiplier architecture. 

PERFORMANCE EVALUATION 
In this section, the performance evaluation of the proposed design is done by comparing 
it with the two existing design technique in generating partial product rows as described 
in [7]. The investigation focused on the critical path delay and FPGA area utilization of. 
using the proposed architecture as compared to previous methods. Table 2 depicts the 
simulation parameters used in this study. 
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Table 2. Simulation parameters. 

CAD tools : Xilinx ISE version 5.2i 
FPGA Target Device : Xilinx Virtex II Pro 
Device ID : 2vp2ff672-6 
Optimization criteria: Speed 
Speed Grade :-6 

Critical Path 
Table 3 shows the critical path delay for each of the related components in generating 
the partial product rows based on the conventional method, Kang's technique in [7] 
as well as the proposed architecture. In generating the partial product rows based on 
the conventional method, the maximum critical path delay required is about 16.423 ns 
whereby two main components involved which are MBE and product generator. However, 
the proposed design technique done by Kang in [7] will take about 17.126 ns to select 
the correct value for the last partial product row for up to 17-bit and this obviously more 
than the conventional method. Kang had not considered the delay for the MBE and 3~5 
decoder because it is incurred in parallel with the delay of two's complementation (and is 
faster than it) and therefore masked by it. 

For the proposed architecture described in this paper, there are three components known 
as MBE, product generator and Mux 5-1 selector required in generating the partial product. 
Based on the simulation results, the proposed architecture takes approximately 15.813 ns 
(MBE + Mux 5-1 selector) which is 0.61 ns less than conventional technique and faster 
1.313 ns than the Kang's technique. Note that the delay for product generator has not 
been considered due to it is incurred simultaneously with the delay of MBE and in fact it is 
faster than it. Therefore, it has been masked by the MBE circuit. Figure 7, 8 and 9 depict the 
gate-level circuits for each of the components. 

Table 3. Critical path delay in generating partial product rows. 
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Figure 7. Gate-level diagram of MBE. 
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(a) Details of product generator circuit. 

Figure 8. Gate-level diagram of product generator. 
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(b) Details of adder circuit. 
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Figure 9. Gate-level diagram of Mux 5-1 selector. 

Area Utilization 
The evaluation of hardware requirements will be in terms of the total cell usage on Xilinx 
Virtex II Pro FPGA board adopted from the synthesis report using simulation parameters 
described in Table 2. Table 4 shows the total cell usage obtained in generating the partial 
product rows for each ofthe design technique. 

Table 4. Total cell usage in generating the partial product rows. 



It turns out that the proposed method requires fewer cells in total compared with the 
Kang's method in generating partial product rows. Although it consumes more cells than 
the conventional method, it still considered Jess area usage due to the proposed method . 
does not required an additional partial product row whilst performing the addition 
operation whereby the conventional method still required one extra partial product 
row. Forthat particular extra row, it is actually consumes the same amount of hardware 
of two full-adder circuits. Thus, by implementing the proposed system, not only the 
speed advantage but also area utilization may be optimized and well balanced for any 
multiplication sizes. As a conclusion, having one additional partial product row as well as 
the use of error correction circuits not only brings to performance degradation but also 
more hardware usage. 

CONCLUSION 
In this paper, we have presented the partial product generator architecture which capable 
to reduce the number of partial product rows from (IV2) + 1 to 11/2 at the first step of a 
multiplication process. By doing so, the structure of partial product becomes easier to be 
added for the final accumulation. Furthermore, by having fewer partial products, its not 
only can reduced the area of the circuit but also at the same time increase the speed of the 
system due to the major source of delay in adders is consumed from the carries numbers 
[16]. 

In order to completely validate this method, future work would be to design the fast 
adders which can perform the final accumulation process based on the partial product 
rows generated. From this, a complete design of multiplier can be produced and hence 
could be evaluate its performance and compare it with other design approaches. 
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